AES Show Spring 2021 + 150th Audio Engineering Convention + May 25 - 28, 2021

pyloudnorm
A simple yet flexible loudness meter in Python

Christian J. Steinmetz Joshua D. Reiss

Centre for Digital Music, Queen Mary University of London
UKRI Centre for Doctoral Training in Artificial Intelligence and Music

‘a_@_-s’ Queen Mary

University of London

Easy installation with pip...

pip install pyloudnorm

and measure loudness in just a few lines of code

import soundfile as sf
import pyloudnorm as pyln

data, rate = sf.read("test.wav") # load audio (with shape (samples, channels))

meter = pyln.Meter(rate) # create BS.1770 meter
loudness = meter.integrated_loudness(data) # measure loudness

Outline

Loudness
ITU-R BS.1770
Modifications
pyloudnorm

Evaluation

What is loudness?

Humans perceive sound pressure on
a nonlinear scale with respect to
frequency and intensity.

Oftentimes we want to compare the
relative loudness of two stimuli, but
this can be challenging.

What is loudness?

Humans perceive sound pressure on
a nonlinear scale with respect to
frequency and intensity.

Oftentimes we want to compare the
relative loudness of two stimuli, but
this can be challenging.

Models of loudness

There has been significant research on

subjective loudness in psychoacoustics.
(Stevens, 1956; Zwicker & Scharf, 1965; Moore & Glasberg,
1996; Moore, 2014)

There has also been interest in methods
for measuring the loudness of music such

as Vickers' loudness and ReplayGain.
(Vickers, 2001) (Robinson, 2002)

ITU-R BS.1770 recommendation attempts to
standardize these methods with a simple
algorithm, and has been adopted in EBU R 128,
which dictates loudness for broadcast.

ITU-RBS. 1770
Integrated loudness

Channel

' I weighting

K filtering Energy
Tr | High-shelf Highpass YL | 400ms yL’j; 1 i i[n)?
- fc — 1681 Hz .fc = 38Hz - Blocks - N n=1 -
TR j
| High-shelf Highpass Yr | 400ms yR’J‘ A EN: [
"| f. = 1681 Hz f. = 38Haz | Blocks | N

A simple algorithm for measuring loudness of electronically

101log,,

Gate

™ {T., T}

— [;

reproduced sounds (recordings, live broadcasts, etc.)

rL

ITU-RBS. 1770
Integrated loudness

TR

. Response of stage 1 of the pre-filter used to account for the acoustic effects of the head
K filtering b
8
| High-shelf | | Highpass YL s
| f. = 1681Hz f. = 38Hz a
2 2
&
iZ B
| High-shelf) Highpass Yr .
> 8 |
f. = 1681 Hz f. = 38Hz . :
o 10° 10’ 10°
Frequenc y (Hz)

Relative level (dB)

Second stage weighting curve

10' 10° 10° 10°
Frequency (Hz)
BS.1770-04

Two stage filtering processing to simulate human sensitivities.

ITU-RBS. 1770
Integrated loudness

K filtering

TL High-shelf Highpass YL 400ms
e | > —
f. = 1681 Hz fo =38Hz Blocks
TR 1
High-shelf Highpass YR 400ms
. o _>‘ © el B
f. = 1681 Hz fo = 38Hz Blocks

Split the filtered signal into overlapping blocks of 400ms.

ITU-RBS. 1770
Integrated loudness

K filtering Energy
L . ~ . j z j
TL High-shelf L Highpass Yr | 400ms '!JL,]‘ 1 i [n]? L’].
f. = 1681 Hz f. = 38Hz | Blocks T N &
TR '
High-shelf Highpass YR 400ms YR.j 1 2 R
— — > o Z yrjln]” —>
f. = 1681 Hz f. = 38Hz Blocks Y ==

Measure the energy in each block.

ITU-RBS. 1770
Integrated loudness

K filtering Energy Channel
weighting

Tr High-shelf Highpass YL 400ms YL, 1 & 5 2
—_— — & e Z yr,;[n]*

fo = 1681 Hz fo = 38Hz Blocks N e
TR . AT

High-shelf Highpass Yr 400ms YRj 1 9

— - > > — Z yrj[nl°

f. = 1681 Hz fo. =38Hz Blocks N — "

Weight the channels appropriately. (Relevant for multichannel)

ITU-RBS. 1770
Integrated loudness

Channel

| weighting

K filtering Energy
TL High-shelf Highpass Yr 400ms YLj T &
— . g e > > D yr;n]
fo = 1681 Hz fo =38Hz Blocks N
TR . ar
High-shelf Highpass YR 400ms YR.j T &
— - o Z YR,j [N]
fo = 1681 Hz fo = 38Hz Blocks N ==

10log,

Gate

" {T,, T}

— [;

Apply log scaling and use a gate to remove blocks below the thresholds.

ITU-RBS. 1770
Integrated loudness

1
Lgg = —0.691 +10log;, » _g; (m Zzi,j),
i 2 7,

this time where J, = {j : I; > T, and l; > T, }.

Compute integrated loudness by summing the

energy of all blocks above the two thresholds.
(Refer the the original rec. for more details)

https://www.itu.int/dms_pubrec/itu-r/rec/bs/R-REC-BS.1770-4-201510-I!!PDF-E.pdf

Applications

While designed for broadcast, there are now many other applications.

o Automatically normalizing stimuli for listening tests
(Olive et al., 2013) (Jillings et al., 2015)

o Automatic loudness-based multitrack mixing
(Ward et al., 2012) (Mansbridge et al., 2012) (Ward & Reiss, 2016) (Fenton, 2018)

o Pre-processing audio datasets in machine learning
(Abdelnour et al., 2018) (Fischer et al., 2020) (Cosentino et al., 2020)

o Feature extraction and data augmentation
(Lenain et al., 2020) (Salamon et al., 2017)

Modifications

It should be noted that while this algorithm has been
shown to be effective for use on audio programmes
that are typical of broadcast content, the algorithm is
not, in general, suitable for use to estimate the
subjective loudness of pure tones. ~ ITU-RBS. 1770

The recommendation makes clear that loudness
measurements correlate well with perception only when
the signal being measured is broadband in nature.

Modifications (cont.)

Cabrera et al., 2008

Cutoff frequency of the highpass filter to 149 Hz,
and the replacement of the high-shelf filter by a notch filter centered at 1 kHz

Pestana et al., 2013

Smaller gating block size of 280 ms and +10 dB gain on the high-shelf filter,
which was better optimized for measuring loudness of multitrack instrument sources

Fenton & Lee, 2017

Boosting the gain of the high-shelf filter by +5 dB and changing the cutoff of the highpass
filter to 130 Hz, as well as a peaking filter with a center frequency of 500 Hz

De Man, 2018

The original recommendation only provided filter coefficients at 48 kHz, so they
reverse-engineered the filter specification from the original recommendation.

pyloudnorm

Simple to install and run, but flexible to enable modifications.

import soundfile as sf
import pyloudnorm as pyln

data, rate = sf.read("test.wav") # load audio (with shape (samples, channels))

meter = pyln.Meter(rate) # create BS.1770 meter
loudness = meter.integrated_loudness(data) # measure loudness

block size

meterl
meter2

filter
meter3 =
meter4
meter5
meter6
meter7

pyln.Meter(rate)
pyln.Meter(rate,

classes

pyln.Meter(rate)
pyln.Meter(rate,
pyln.Meter(rate,
pyln.Meter(rate,
pyln.Meter(rate,

Pyloudnorm

Utilizing proposed modifications

block_size=0.200)

filter_class="DeMan")

filter_class="Fenton/Lee 1")
filter_class="Fenton/Lee 2")
filter_class="Dash et al.")

S S N

400ms block size
200ms block size

BS.1770 meter

fully compliant filters

low complexity improvement by Fenton and Lee
higher complexity improvement by Fenton and Lee
early modification option

Pyloudnorm

Enable future modifications

create your own IIR filters
my_high_pass = IIRfilter(0.0, 0.5, 20.0, rate, 'high_pass"')
my_high_shelf = IIRfilter(2.0, 0.7, 1525.0, rate, 'high_shelf"')

create a meter initialized without filters
meter8 = pyln.Meter(rate, filter_class="custom")

load your filters into the meter
meter8._filters = {'my_high_pass' : my_high_pass, 'my_high_shelf' : my_high_shelf}

Evaluation

|s pyloudnorm compliant
and how does it compare to
other loudness implementations?

Loudness implementations

Essentia (Bogdanov et al., 2013)
ffmepg

libebur128

loudness.py (De Man, 2018)
Adobe Audition

youlean

https://essentia.upf.edu

https://ffmpeqg.or

https://github.com/jiixyj/libeburl28

https://github.com/BrechtDeMan/loudness.py

https://www.adobe.com/products/audition

https://youlean.co/file-loudness-meter

https://essentia.upf.edu
https://ffmpeg.org
https://github.com/jiixyj/libebur128
https://github.com/BrechtDeMan/loudness.py
https://www.adobe.com/products/audition
https://youlean.co/file-loudness-meter

Provided compliance material

Implementation
File Target pyloudnorm loudness.py ffmpeg libebur128 Essentia Audition youlean
Default De Man
FrequencySweep -18.0 -18.03 -17.99 -17.99 -18.00 -18.00 -18.18 -18.03 -18.02
25Hz_2ch -23.0 -23.00 -22.99 -22.99 -23.10 -23.00 -26.37 -23.04 -23.02
100Hz -2ch -23.0 -23.03 -22.99 -22.99 -23.10 -23.00 -22.86 -23.04 -23.02
500Hz_2ch -23.0 -23.04 -22.99 -22.99 -23.10 -23.00 -22.99 -23.04 -23.02
1000Hz 2ch -23.0 -23.03 -22.99 -22.99 -23.10 -23.00 -23.00 -23.04 -23.02
2000Hz-2ch -23.0 -23.03 -22.99 -22.99 -23.10 -23.00 -23.00 -23.04 -23.02
10000Hz-2ch -23.0 -23.04 -22.99 -22.99 -23.10 -23.00 -23.00 -23.04 -23.02
25Hz_2ch -24.0 -24.00 -23.99 -23.99 -24.10 -24.00 -27.21 -24.04 -24.02
100Hz_2ch -240 -24.03 -23.99 -23.99 -24.10 -24.00 -23.92 -24.04 -24.02
500Hz_2ch -24.0 -24.04 -23.99 -23.99 -24.10 -24.00 -23.99 -24.04 -24.02
1000Hz-2ch -24.0 -24.04 -23.99 -23.99 -24.10 -24.00 -24.00 -24.04 -24.02
2000Hz-2ch -240 -24.04 -23.99 -23.99 -24.10 -24.00 -24.00 -24.04 -24.02
10000Hz-2ch -24.0 -24.04 -23.99 -23.99 -24.10 -24.00 -24.00 -24.04 -24.02
RelGateTest -10.0 -10.07 -10.03 -10.03 -9.60 -10.00 -10.03 -10.07 -10.15
AbsGateTest -69.5 -69.49 -69.45 -71.46 -69.50 -69.50 -69.45 -69.49 -69.55

Table 1. Comparison of loudness algorithm implementations with provided compliance material (ITU-R BS.2217).
Measurements that are not within the +0.1 dB LUFS tolerance for compliance are marked in boldface.

ITU-R BS.2217. Compliance material for recommendation ITU-R BS.1770. May 2011.

Potential Issues

-20
~ —25 A
w0
[T
>
-
m —30 A
S —— pyloudnorm (Default)
§ -35 —— pyloudnorm (De Man)
5 —— loudness.py
3 — ffmpeg
= —40 A
—— |loudness-scanner
— essentia
—45 +— : ! I T
5 10 15 20 25 30

Frequency (Hz)

Figure 2. Measured loudness of -6 dB sinusoidal tones.

Essentia filters appear to deviate in very low frequencies.

Challenging compliance material

Implementation
File Mean pyloudnorm loudness.py ffmpeg libeburl28 Essentia Audition youlean
Default De Man
sine_16Hz -24.08 -2344 -23.44 -23.36 -23.50 -23.40 -28.48 -2348 -23.51
sine_1000Hz -3.13 -3.05 -3.01 -3.01 -3.00 -3.00 -3.01 -3.05 -3.88
sine_1000Hz_pad -4.18 -4.19 -4.15 -4.15 -4.20 -4.10 -4.15 419 -432
sine_16000Hz -19.77 -19.69 -19.64 -19.64 -19.70 -19.60 -19.64 -19.69 -20.52
sine_19000Hz -19.78 -19.69 -19.64 -19.64 -19.80 -19.60 -19.64 -19.69 -20.52
multi-sines -10.65 -10.67 -10.62 -10.62 -10.60 -10.60 -10.64 -10.67 -10.79
hf-noise 934 921 -9.16 -9.15 -9.60 -9.20 -9.16 921 -10.04
chirp-150-190 -6.69 -6.55 -6.50 -6.52 -6.50 -6.50 -6.51 -6.55 -7.88
our.gating.test -3.37 -3.37 -3.33 -3.33 -3.30 -3.30 -3.33 -3.37 -3.61
piano-D6 -25.12 -25.02 -24.98 -2498 -28.20 -25.00 -2498 -25.03 -22.73
soprano-E4 -29.74 -29.82 -29.77 -29.57 -29.60 -29.60 -29.78 -29.61 -30.15
vibraphone-Cc6 -17.29 -1695 -16.90 -16.90 -17.90 -1690 -19.60 -16.95 -16.23
violin-B3 -12.78 -12.82 -12.78 -12.69 -12.70 -1270 -12.78 -12.74 -13.00

Table 2. Comparison of loudness algorithm implementations with alternative material.
Measurements that disagree with others significantly (> 0.5 dB LUFS) are marked in boldface.

Runtime

Implementation RTF Audio Loader
ffmpeg 26x ffmpeg
Essentia 88x Essentia
libebur128 114x ffmpeg
loudness.py 421x pysoundfile
pyln (Default) 338x pysoundfile
pyln (De Man) 455x pysoundfile

Table 3. Mean real-time factor.

B csteinmetz1/ pyloudnorm @®Unwatch ~ 12 ¢ Star 179 % Fork 17

<> Code () Issues 6 i Pull requests (¥) Actions [T Projects 07 wiki () Security |~ Insights

¥ master ~ ¥ 4 branches © 1tag Go to file Add file ~ About &
Flexible audio loudness meter
Q csteinmetz1 Merge pull request #36 from csteinmetzl/... -« + 99d3al6 23 daysago <O 98 commits in Python with implementation
of ITU-R BS.1770-4 loudness
B pyloudnorm Update normalize.py 2 months ago algorithm
I tests Cleaned formatting of test file 2 years ago & www.christiansteinmetz.com...
[% .gitignore fixing up the .gitignore a bit 2 years ago J Readme
[.travisyml tweaking test 3 years ago &% MIT License
[LICENSE Create LICENSE 3 years ago
[% README.md adding citation and link to pre-print last month Releases 1
[requirements.txt adding future as a dependancy - this will allow for back... 3 years ago © 0.1.0
on Nov 24, 2019
[setup.py updating version and my email address for latest releas... 2 years ago
‘= README.md 7 Packages

No packages published
Publish your first package

pyloudnorm “Zenodo

Flexible audio loudness meter in Python. Contributors 3

https://github.com/csteinmetzl/pyloudnorm

https://github.com/csteinmetzl/pvloudnorm-eval

https://github.com/csteinmetz1/pyloudnorm-eval
https://github.com/csteinmetz1/pyloudnorm

Summary

Easy to install and use loudness package
Fully compliant ITU-R BS. 1770 implementation
Enables modifications and future improvements

One of the fastest Python options available

AES Show Spring 2021 + 150th Audio Engineering Convention + May 25 - 28, 2021

pyloudnorm
A simple yet flexible loudness meter in Python

Christian J. Steinmetz Joshua D. Reiss

Centre for Digital Music, Queen Mary University of London
UKRI Centre for Doctoral Training in Artificial Intelligence and Music

‘a_@_-s’ Queen Mary

University of London

