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What is (automatic) mixing?

Plugin processors
(compressor, EQ, reverb, etc.)
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Expert systems Machine Learning

(Knowledge engineering) vS. (Classical ML algorithms)
Pro: Produces explainable decisions Pro: Provides greater model flexibility
Con: Lacks sufficient complexity Con: Complete absence of parametric data
(De Man and Reiss, 2013) (Moffat and Sandler, 2019)

These systems fail to generalize to real-world music production

Automatic mixing references: https://csteinmetzl.github.io/AutomaticMixingPapers/



https://csteinmetz1.github.io/AutomaticMixingPapers/

Can deep learning enable us to learn mixing
techniques directly from tracks and mixes
without the underlying mixing parameters?
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Key challenges

In the application of deep learning for mixing

Evaluation of mixes
Highly variable inputs
High-fidelity required
User interaction

What makes a good mix? According to who?
No consistent size and structure to inputs.
High sampling rates and no artifacts.

Audio engineers need to tweak the output.
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We could use traditional DSP effects as a
strong inductive bias for the mixing task
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Unfortunately, the mixing
console is not differentiable
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...but we can train a differentiable
model to emulate a channel.



Differentiable mixing console
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Encoder Extract info from inputs for making mixing decisions

Input 1 —— Encoder

Input2 — Encoder

Generates 128 dim embedding
for each input channel

InputN — Encoder
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Melspectrogram input

128 dim embedding
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VGGish trained on AudioSet
(Hershey et al., 2017)



POSt—processor Aggregate information to make mixing decisions
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» Post-processor ———

A single MLP is distributed across
_jPost—processor  —— a” input Channels (Shared We|ght3)
- This provides input ordering
: invariance and places no limit on
e | number of input channels.
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Mean of all input embeddings MLP Mix parameters
for a single channel




Transformation Perform the types of processing employed in mixing
N e'tWO rk (but in a differentiable framework)

Transformation network

Input 1 ——»1 We can train a model on this model

Transformation network with generated data by processing
audio files with random settings of
existing audio effects.
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Stereo loss function

Loss function to encourage realistic mixes

L1=1
5 120 L7 and L2 loss on stereo

L1=2 - ; .
i here s more 6 signals encourage panning
perceptually similar but GT all elements to the center.
gives a higher L1 loss

Left Right
Ysum = Yleft + Yrighit eStereo (?3, y) - EMR-STFT (gsuma ysum) 2B ZMR—STFT (gdiffa ydiff)

Ydiff = Yleft — Yright Achieves invariance to stereo (left-right) orientation
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Model configurations

Gain + Panning (Transformation network is not used)
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Gain + EQ + Compressor + Reverb + Panning
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Datasets

ENST-drums Easier, but less realistic mixing task
(Gillet and Richard, 2006)

Recordings from three drummers, all follow same 8 channel structure

MedleyDB Challenging, but realistic mixing task
(Bittner et al., 2016)

Diverse styles, varying number of tracks (2-100), complete songs
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Mono mix

Baselines

Random mix

Wave-U-Net mix

1D Convolution, Size 15

cat
Upsampling
A

Upsampling block 1

Downsam plingblock 2 Feoeeeeeeeeeana J‘ Upsampling block 2

' 1

block L i Upsampling block L

1D Convolution, Size 15

(Stoller et al., 2018)

(Martinez Ramirez et al., 2021)
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Demo
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Perceptual evaluation

ENST-drums (8 channels)

o

MedleyDB (6 channels)

Gain + EQ + Compressor + Reverb + Panning

ours) Wave-U-Net
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Passage
DMC (ours) ®  Mono ®  Random ]

Listeners rate mixes from our
system higher than baselines in the
drum mixing task.

Our mixes often exceed baselines,
but creating mixes with all the
processors is a lot harder...
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Contributions

Deep learning based Our end-to-end mixing architecture:
multitrack mixing system

—

Can be trained with a limited number of examples

Learns mixing conventions directly from stereo mixes

Controller network

2
o | T gt — Transormation network 3. Makes no assumptions about input sources
Input 2 Encoder Post-processor _—I—12_> Transformation network
L J nput2 — . . H
: ; : : 4. Places no limit on the number of input sources
Input N ' Encoder " 3 Post Input N —» Transformation network 5

Enables users to adjust the mix results (interpretability)
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MedleyDB full mixing task

Passage
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MedleyDB 6 channel full mix
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See the companion
website for more
listening examples


https://csteinmetz1.github.io/dmc-icassp2021
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