MDX Workshop @ ISMIR • 12 November 2021 **Deep learning for automatic mixing** Challenges and next steps

Christian J. Steinmetz

c.j.steinmetz@qmul.ac.uk Centre for Digital Music, Queen Mary University of London

UK Research and Innovation

More people are creating audio & music content than ever before

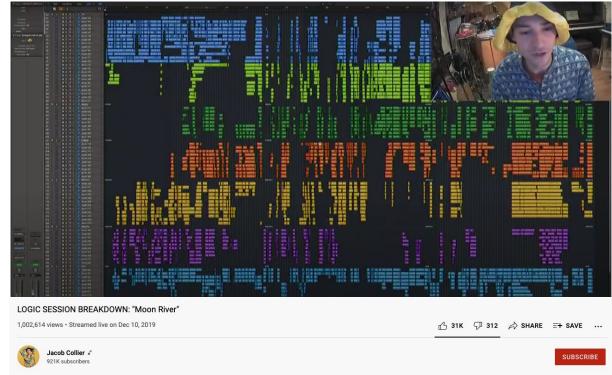
Over 60,000 new songs on Spotify every day

More than 500,000 active podcast shows

31 million YouTube channels producing audio/visual content

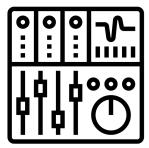
Demand for audio editing/creation tools is increasing,

especially tools that elevate the quality of **budget productions** or expedite workflow for professionals.


What is mixing?

Combine elements to create a cohesive mixture that serves the composition.

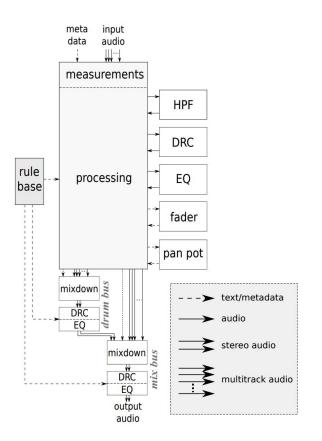
Combine can mean: Leveling Panning Equalization Compression Limiting Reverb/Delay Creative effects...


It can be **really** complex!

Jacob Collier breaks down the logic session of his GRAMMY winning arrangement of Moon River.

Automatic mixing

Does mixing have to be so hard?

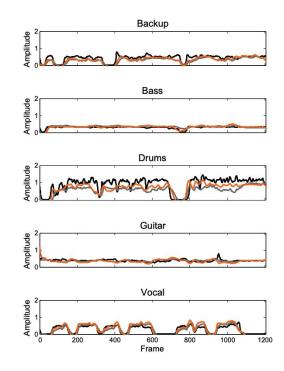


Expert systems

Design a set of rules based to create a mix based on analysis of the inputs.

Pro: Explainable decisions

Con: Often lacks sufficient complexity


A knowledge-engineered autonomous mixing system Brecht De Man, Joshua D. Reiss AES 2013

Machine Learning*

Learn to create a mix by leveraging parametric data collected from pros.

Pro: Greater model flexibility

Con: Requires data (parametric)

Analysis of acoustic features for automated multitrack mixing Jeffrey J. Scott. Youngmoo E. Kim ISMIR 2011

*Approaches that use classical machine learning techniques

home stats contribute resources

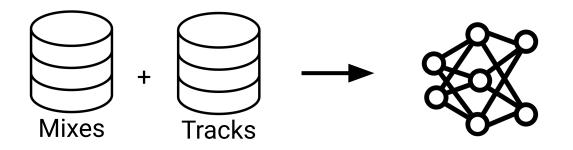
Automatic mixing research

Tracking academic work in the field of automatic multitrack audio mixing

LEVEL	EQUALIZATION	COMPRESSION	PANNING	REVERB	MULTIPLE	MACHINE LEARNING	KNOWLEDGE-BASED	OVERVIEW	CLEAR	
Show 10 - entries							Search:			
Year	Title				Author	(\$)	Category	Approach	Code	
2019	Modelling experts' decisions on assigning narrative importances of objects in a radio drama mix				E.T. Cho	urdakis et al.	Level	ML	CODE	
2019	Approaches in Intelligent Music Production				D. Moffa	t and M. B. Sandler	Multiple	Overview		
2019	Intelligent Music Production				B. De Ma Stables	an and J.D. Reiss and R.	Multiple	Overview		
2019	An Automated Approach to the Application of Reverberation				D. Moffa	t and M. B. Sandler	Reverb	ML	CODE	
2019	User-guided Rendering of Audio Objects Using an Interactive Genetic Algorithm				A. Wilso	n and B. Fazenda	Level	ML		
2018	Automatic minimisation of masking in multitrack audio using subgroups				D. Ronar	n et al.	Multiple	KBS	CODE	
2018	End-to-end equalization with convolutional neural networks				M. A. Martínez Ramírez and J. D. Reiss		Equalization	ML		
2018	Adaptive ballistics control of dynamic range compression for percussive tracks			D. Moffa	t and M. B. Sandler	Compression	KBS	CODE		
2018	Automatic mixing of	multitrack material	using modified	loudness model	S. Fento	n	Level	KBS		
2018	Towards a semantic rules	web representation	and application	of audio mixing	D. Moffa Sandler	t, F. Thalmann and M. B.	Multiple	KBS		
showing	11 to 20 of 64 entries	5					Previous 1	2 3 4 5	6 7 Nex	
								•		
Categories				Ann	roaches					

More works on automatic mixing research

Searchable/filterable table of relevant papers and stats



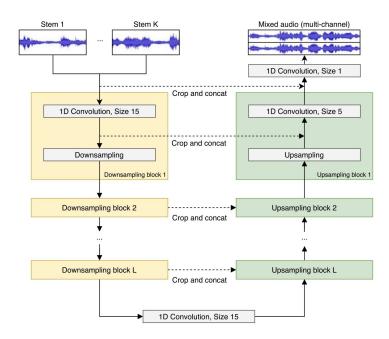
https://csteinmetz1.github.io/AutomaticMixingPapers

Deep learning for automatic mixing

The promise of deep learning

Can we **learn** to produce mixes directly from tracks and mixes without any knowledge of the parameters used?

Many challenges

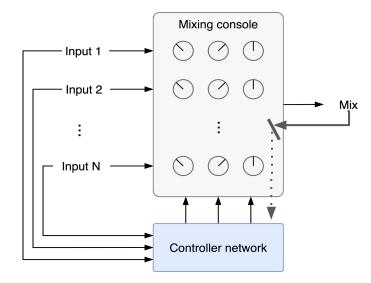

- 1. Limited training data
- 2. Evaluation of mixes
- 3. Highly variable inputs
- 4. High-fidelity required
- 5. User interaction

We need the original tracks and good mixes. What makes a good mix? According to who? No consistent size and structure to inputs. High sampling rates and no artifacts. Audio engineers need to tweak the output.

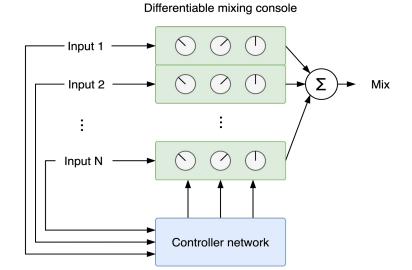
Great time to innovate on these hard problems!

Approaches How can we apply deep learning?

Fully end-to-end approach

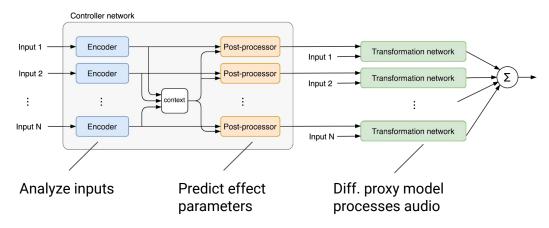

Contributions

- Model problem as "reverse" source separation
- Produce high quality drum mixes
- Architecture requires no domain knowledge


Limitations

- Cannot adapt to variable track count
- Not permutation invariant to input tracks
- User cannot adjust the final result

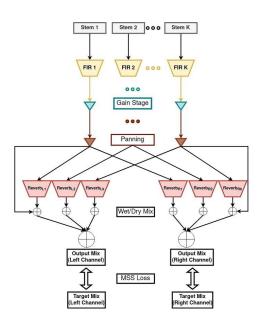
How can we learn to control audio effects?


Unfortunately, the mixing console is not differentiable

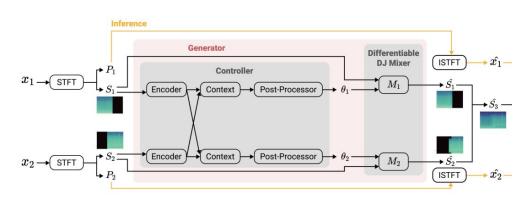
Can we construct a differentiable mixing console?

Neural audio effects (Proxies)

Weight sharing across all input tracks


Contributions

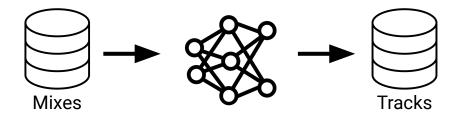
- Scale to any number of tracks
- Permutation invariant w.r.t input tracks
- Human readable control parameters
- Enforces no input taxonomy


Limitations

- Requires pre-training of effect networks
- Training requires significant compute

Autodiff (DDSP) effects

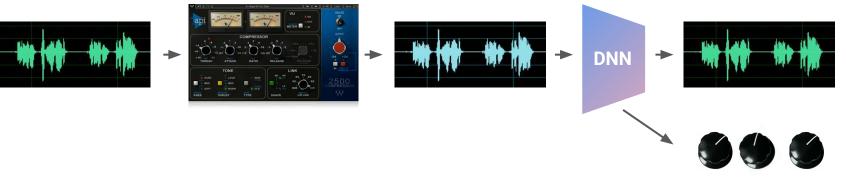
Reverse engineering of a recording mix with differentiable digital signal processing Joseph T. Colonel and Joshua Reiss JASA 2021



Automatic DJ Transitions with Differentiable Audio Effects and Generative Adversarial Networks Chen et al. arXiv 2021

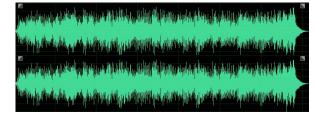
Source separation for automatic mixing

Source separation for mixing data generation

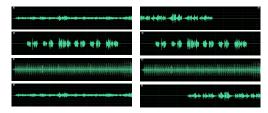

We have many more mixes than we do multitracks

Can we use source separation to leverage the large collections of produced audio datasets that are available (FMA, MSD, MTG-Jamendo, etc)?

... But, current source separation algorithms do not consider audio effects...


Estimating the loudness balance of musical mixtures using audio source separation Dominic Ward, Hagen Wierstorf, Russell Mason, Mark Plumbley, Christopher Hummersone WIMP 2017

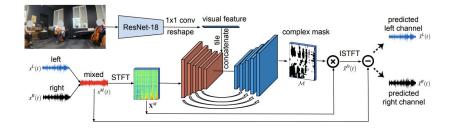
Audio effect removal (and parameter estimation)


parameter estimation

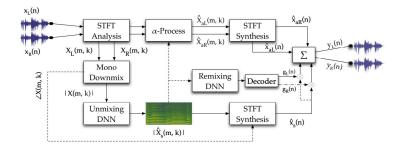
Y Holy grail: Fully deconstructing a mix

1. Detailed separation

2. Effect parameter estimation

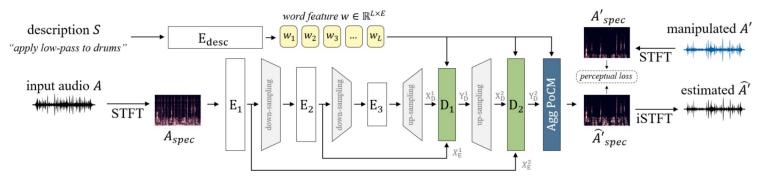


3. Effect removal



Automatic upmixing

Can we separate music sources and automatically generate spatial audio content?



2.5D Visual Sound Ruohan Gao, Kristen Grauman CVPR 2019

New sonorities for jazz recordings: Separation and mixing using deep neural networks Stylianos Ioannis Mimilakis, et al. WIMP 2016

Audio source manipulation

AMSS-Net: Audio manipulation on user-specified sources with textual queries Choi et al. ACM Multimedia 2021

Music source separation is a subset of general audio manipulation!

Audio source manipulation

What could future audio manipulation interfaces look like?

Recap

- Significant demand for audio tools that make things easier
- Research on **deep learning** for audio production is **very** fresh
- Potential research directions
 - a. Advancing DL for automatic mixing
 - i. Data generation via source separation
 - ii. More differentiable audio effects
 - iii. Scalable architectures for multichannel audio
 - b. Music source separation with audio effect removal
 - c. Separation for automatic upmixing (e.g. stereo -> Dolby Atmos)
 - d. General audio source manipulation

References

A knowledge-engineered autonomous mixing system Brecht De Man, Joshua D. Reiss AES 2013

Analysis of acoustic features for automated multitrack mixing Jeffrey J. Scott, Youngmoo E. Kim ISMIR 2011

A deep learning approach to intelligent drum mixing with the Wave-U-Net Marco A Martínez Ramírez, Daniel Stoller, David Moffat JAES 2021

Automatic multitrack mixing with a differentiable mixing console of neural audio effects Christian J. Steinmetz, Jordi Pons, Santiago Pascual, Joan Serrà ICASSP 2021

Reverse engineering of a recording mix with differentiable digital signal processing Joseph T. Colonel, Joshua Reiss JASA 2021

Automatic DJ Transitions with Differentiable Audio Effects and Generative Adversarial Networks Chen et al. arXiv 2021

Estimating the loudness balance of musical mixtures using audio source separation Ward et al. WIMP 2017

Guitar effects recognition and parameter estimation with convolutional neural networks Marco Comunità, Dan Stowell, Joshua D Reiss JAES 2021

2.5D Visual Sound Ruohan Gao, Kristen Grauman CVPR 2019

New sonorities for jazz recordings: Separation and mixing using deep neural networks Stylianos Ioannis Mimilakis, et al. WIMP 2016

AMSS-Net: Audio manipulation on user-specified sources with textual queries Choi et al. ACM Multimedia 2021

Attribution

Videos

- <u>Analog Mixing (SSL Console) GoPro POV "Get Out Of Bed" by Magician's Nephew</u> From Daniel Duskin
- LOGIC SESSION BREAKDOWN: "Moon River" From Jacob Collier

lcons

- mixing board by Eucalyp from the Noun Project
- arrows by Ker'is from the Noun Project
- History by The Icon Z from the Noun Project
- Head by ainul muttaqin from the Noun Project
- Brain by achmad mulyana from the Noun Project
- Data by arjuazka from the Noun Project
- Neural Network by Ian Rahmadi Kurniawan from the Noun Project

MDX Workshop @ ISMIR • 12 November 2021 **Deep learning for automatic mixing** Challenges and next steps

Christian J. Steinmetz

c.j.steinmetz@qmul.ac.uk Centre for Digital Music, Queen Mary University of London

