IEEE Workshop on Applications of Signal Processing to Audio and Acoustics • October 2021

Filtered noise shaping for time domain room impulse response estimation from reverberant speech

Christian J. Steinmetz Centre for Digital Music, Queen Mary University of London c.j.steinmetz@qmul.ac.uk

Paul Calamia Facebook Reality Labs Research

Vamsi Krishna Ithapu Facebook Reality Labs Research

The room impulse response (RIR) has many applications

- Informing dereverberation and speech recognition algorithms
- Room acoustics analysis
- Virtual sound sources for VR/AR

...but measuring the RIR can be difficult.

Measured room impulse response

- Uses an intrusive test signal
- Require low noise floor in the environment
- High fidelity transducer and microphone

Blind estimation of room characteristics

- Uses an unobtrusive test signal
- More robust to external noise
- Use consumer grade microphones

...but T60 and DRR alone do not fully characterize the room.

Recent deep learning approaches

- a) Estimate parameters of artificial reverberators
- May not generalize to real rooms
- Highly dependent on quality of artificial reverberation algo.

- b) End-to-end neural network processes audio signals
- Requires significant compute
- Potential to add artifacts

Balance these approaches by estimating the RIR directly and perform convolution

FiNS: Filtered Noise Shaping network reconstructs RIRs from reverberant speech

- Analyze reverberant speech to estimate time domain RIR
- Model RIR as sum of decaying filtered noise signals
- Operate at 48 kHz for use in high fidelity audio processing
- Outperforms DL based approaches in listening test

Encoder

- Time domain encoder
- 13 layers of Conv1d residual blocks
- Strided convolutions downsample signal
- Produces 128 dim embedding
- Receptive field ~2.4 seconds @ 48 kHz

Decoder

- Upsample latent (z) to produce RIR
- Design based on decoder of GAN-TTS
- Use feature-wise linear modulation (FiLM) to inject latent and noise at each block

Decoder (Noise shaping)

- Model the RIR in two parts:
 - Late reverberation generated with a sum of filtered noise signals
 - **Direct and early parts** estimated directly in the time domain

Enable generative model without adversarial training

Data generation

Baselines

Wave-U-Net

- Adapt model for source separation for estimation of RIR
- No inductive bias for the task of estimating RIRs
- Train using MRSTFT loss

Baselines FiNS Direct (D)

Does filtered noise shaping aid in RIR estimation?

- Use same encoder and decoder, except the decoder directly estimates the time domain RIR
- Conceptually similar to Wave-U-Net except without skip connections

Objective results

RIR	Speech	Model	L _{STET} .		T_{60}		DRR						
	Speece		~3111 ¥	Bias $ \downarrow $	MSE (s) \downarrow	$\rho\uparrow$	Bias $ \downarrow $	MSE (dB) \downarrow	$ ho\uparrow$				
FRL	VCTK	Wave-U-Net FiNS (D) FiNS	1.127 1.064 1.157	-0.016 -0.001 0.041	$0.005 \\ 0.004 \\ 0.005$	$\begin{array}{c} 0.480 \\ 0.548 \\ 0.646 \end{array}$	-0.25 0.54 0.43	4.19 4.13 4.45	0.736 0.734 0.721				
FRL	ACE	Wave-U-Net FiNS (D) FiNS	1.119 1.137 1.183	$0.006 \\ 0.034 \\ 0.057$	$0.004 \\ 0.006 \\ 0.008$	0.495 0.479 0.540	-0.58 0.50 0.50	5.55 5.14 6.29	0.625 0.661 0.625				

- All models are capable of estimating RIRs with accurate T₆₀ and DRR
- Generalizes to unseen speech from VCTK and ACE datasets
- Listening indicates FiNS (D) and Wave-U-Net produce ringing artifacts

"Listeners rated RIRs produced by FiNS the most similar to the reference, yet they could still differentiate among them."

MUSHRA design with 15 listeners

Encoder implicitly captures room characteristics

2D UMAP projections of 128 dim encoder embeddings

Utterance Clean			Reference		Anchor			Wave-U-Net					FiNS (D)					FINS				
F1 VCTK Speech	► 0:00 - 4)	•	▶ 0:00 -	•	▶ 0:00	- •>	;	•	0:00	- •	•)	•	•	0:00	-	•)	:	•	0:00	-	•)	:
	RIR		▶ 0:00 -	•	▶ 0:00	- •)	:	•	0:00	- •	•)	•	•	0:00	-	•	:	•	0:00	-	•)	:
F2 VCTK Speech	► 0:00 - •)	:	► 0:00 -	•	▶ 0:00	- •)	:	•	0:00	- •	•	:	•	0:00	-	•)	:	•	0:00	-	•)	:
	RIR		▶ 0:00 -	•	▶ 0:00	- •)	:	•	0:00	- •	•)	:	•	0:00	-	•	:	•	0:00	-	•)	:
M1 VCTK Speech	► 0:00 - 4)		► 0:00 -	•	▶ 0:00	- •>		•	0:00	- •	•	:	٠	0:00	-	•)	:	•	0:00	-	•)	:
	RIR		▶ 0:00 -	•	▶ 0:00	- •>	:	•	0:00	- •	•)	•	٠	0:00	-	•)	:	•	0:00	-	•)	:
M2 VCTK Speech	► 0:00 - 4)	:	► 0:00 -	•	▶ 0:00	- •)	:	•	0:00		•	:	•	0:00	-	•	:	•	0:00	-	•)	:
	RIR		▶ 0:00 -	•	▶ 0:00	- •)	:	+	0:00		●		•	0:00	-	•	:	•	0:00	-	•)	:

https://facebookresearch.github.io/FiNS

Christian J. Steinmetz

Centre for Digital Music, Queen Mary University of London c.j.steinmetz@qmul.ac.uk

FiNS: Filtered Noise Shaping network

- Analyze reverberant speech to estimate time domain RIR
- Model RIR as sum of decaying filtered noise signals
- Operate at 48 kHz for use in high fidelity audio processing
- Outperforms other approaches in listening test