
Granabular: a collaborative granular synthesizer

Christian Steinmetz
Universtat Pompeu Fabra, Barcelona

christianjames.steinmetz01@estudiant.upf.edu

ABSTRACT
Granabular is a networked, multi-user granular synthesizer
with a lightweight web-based interface. The aim of this
work is to provide a means to generate collaborative sound-
scapes, in real-time using a single granular engine imple-
mented in Pure Data. A web-server, built in Flask, man-
ages communication between the users, who connect via
any web browser, and the granular engine. Users are ran-
domly assigned a different parameter of the synthesizer to
control, and also have the ability to enter search queries,
which are used to download recordings from Freesound to
be used as source files in the synthesizer. In addition, users
will be periodically prompted to generate sounds that will
be recorded by their device and sent to the server to be
used as source files. Granabular is designed with a mini-
malist interface so as to provide a low barrier of entry for
participants and aims to enable a paradigm of collaboration
between users interacting with a single instrument.

Author Keywords
Granular sythesis, collaborative, network music

1. INTRODUCTION
In 1947, Garbor proposed his concept of acoustical quanta,
wherein any sound could be described from a quantum per-
spective, which ultimately laid the foundation for the devel-
opment of granular synthesis [2]. The concept of granular
synthesis was first formalized from a compositional stand-
point by Iannis Xenakis in the early 1970s, wherein he de-
scribed the process of describing any given sound by a set
of fundamental sound units known as grains [11]. These
sonic grains are small sound events generally 1 - 50 ms that
are played back in rapid succession to generate a more sig-
nificant acoustic event [7]. Xenakis experimented with this
concept in practice through the use of precise tape-splicing,
but such methods proved challenging given their technolog-
ical limitations [8]. As digital audio technologies evolved
granular synthesis techniques became more accessible and
composers such as Barry Truax [10] and Curtis Roads [7]
became heavily involved in the development of digital sys-
tems for granular synthesis. As the technology has evolved,
commercial devices have been developed that provide com-
posers with the ability to perform granular synthesis with
ease.

Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Copyright
remains with the author(s).

.

Granabular aims to extend upon these past implemen-
tations of granular synthesis, not with the introduction of
new synthesis techniques, but with a new method of human-
computer interaction in the compositional process through a
collaborative system. While previous collaborative synthe-
sis systems have been proposed, the contributions of this
work are two-fold:

1. A minimalist user interface that requires no knowledge
of granular synthesis techniques.

2. Sourcing of grains from microphones in user devices
as well as interaction with the Freesound API.

By enabling multiple users to connect to the same gran-
ular engine simultaneously, each with control over a unique
parameter, no single user is in complete control of the syn-
thesis process, leading to potentially interesting and unpre-
dictable evolution of the performance.

2. RELATED WORK
Collaboration is a foundational aspect of many forms of
music creation from the choir to the orchestra, to the con-
temporary four-piece rock band. Although, notably this
collaboration nearly always occurs among skilled perform-
ers each playing their own instrument. Some early excep-
tions include four handed piano compositions, wherein two
performers play the same piano concurrently [5], although
such techniques have remained at the edge of general com-
positional techniques for the piano.

More recently, with the further development of digital in-
struments and synthesis techniques, there has been a grow-
ing interest in the development of instruments that are de-
signed around the notion of collaboration. Starting in the
1970s, the first demonstrations of networked music enabled
composers to use computers as interactive composition sys-
tems among themselves [1]. Such systems required a signifi-
cant skill and engineering effort on the part of the composer,
and ultimately remained seated in this traditional notion
of collaboration, where each performer plays (and/or de-
signs) their own instrument that interacts with the other
performers. As the internet came to prominence, it became
an integral part in new applications of networked music.
Projects like FMOL demonstrated the potential of multi-
user interaction with a core synthesis engine [4], a model
that Granabular is largely based on. This idea has been
further explored in more recent works such as peerSynth
[9], MOLS, the Multiperformer online synthesizer [3], and
Patchwerk, a collaborative, networked modular synthesizer
[6]. All of these works investigate the combination of web
technologies to provide multiple users with the ability to
interface in real-time with a synthesis engine in an collabo-
rative fashion.



3. IMPLEMENTATION
The system can be broken down into three main compo-
nents: the granular synthesis engine built in Pure data1,
the web server built Flask2, and the web client built with
the usual web stack of HTML, CSS, and JavaScript. These
components as well as their communication channels are
shown in Figure 3. The following sections will outline each
of these components and how they interact.

OSC
Server
(Flask)HTTP Synthesis engine

(Pure Data)
Web client

(HTML/CSS/JS)

Freesound

Grain
Bucket

Figure 1: System block diagram.

3.1 Synthesis engine
The synthesis engine implements a fairly standard granular
synthesizer. It features up to 32 simultaneous voices and
supports the sourcing of grains from a single source file at
any given time. An implementation of freeverb3 is included
to provide artificial reverberation effects within the synthe-
sizer.

There are six main controls of the synthesizer as described
in the list below, which are also shown within the user in-
terface in Figure 3.1.

• density: rate at which new grains are triggered

• start: position in the source file for grains

• pitch: the relative pitch of the grain

• size: length of the grains

• start spray: degree of variation in starting position

• pan spray: degree of variation in spatialisation

The general operation of the synthesis is as follows. On
every bang produced by the main clock (whose rate is de-
fined by the density control), a grain is generated by select-
ing a starting sample from within the source file. This posi-
tion is determined by the value of the start parameter. The
starting sample is then modified to be earlier or later by a
number sampled from a gaussian with mean 0 and variance
set with the start spray control. This behaviour enables the
grains to be sourced from slightly different starting posi-
tions within the source file each time, which helps to reduce
unwanted phasing artifacts.

Once the starting position has been identified, the end of
the grain is set based upon the size parameter. A large size
value means a longer grain and vice versa. With the current
grain identified, a Hann window is applied to smooth any

1https://puredata.info/
2https://flask.palletsprojects.com/
3https://ccrma.stanford.edu/ jos/pasp/Freeverb.html

Figure 2: Granular synthesizer user interface.

discontinuities at the beginning and end. The pitch parame-
ter then controls the rate at which this grain is played back.
Finally, since all grains are mono, they must be panned
within the stereo field. By default the grain will play back
equally in the left and right channels. The pan spray con-
trol allows for the position of each grain to be determined
randomly, and a greater value will mean the stereo field will
be filled more widely.

In order to provide diversity in the performance, multiple
different source files will be used for grain generation. As
described in the following section there are two methods for
user’s to generate these files. Once they are generated they
will be placed in what is known the the grain bucket, a list of
all the files as well as the path to their location. Within the
synthesizer there is another clock which at random intervals
will swap the current source file to another source file within
the grain bucket. Therefore, as the number of source files
grows, the possible diversity in performance grows as well.

3.2 Web client
In order to provide an interface to control parameters of the
synthesis engine, users can connect with the front-end web
client. This is a simple web page which can be loaded on
any device with a compatible web browser, such as a laptop
of mobile phone. Since all of the content is provided via the
web server (as will be addressed in the next section), there
is no installation process required for the end users. Users
must simply be connected to the same network as the web
server and then navigate to the proper address, where they
will be prompted to join the session.

After joining the current session, the user will be as-
signed one of the parameters of the synthesizer at random,
as shown in Figure 3.2. The interface is kept purposefully
simple so as not to produce unnecessarily complexity. A
single, large slider is placed in the center of the screen as
well as a simple description of its function. This interface
remains approachable, even to novice users, since they can
simply experiment by moving the slider to build an intuitive
understanding of its function.

There are two main methods of generating source files to
be used in the granular synthesis engine, both of which are
user driven. The first method involves directly recording
source files via the microphone present in the user’s device.
If this mode is activated, when the user joins the session
they will be prompted by their browser to allow access to
their microphone. If granted, at random intervals the in-
terface will change color and indicate to the user that they



Figure 3: Minimalist browser-based client interface.

should begin making noise as shown in Figure 3.2. During
this period of ten seconds a recording will be made with
their device’s microphone and it will then be sent to the
web server.

The second method involves sourcing recordings directly
from Freesound4, a platform for sharing creative commons
recordings. In addition to the single range slider, users are
also presented with an input box. They can type queries
here which will then be sent to the server. The server will
then send these queries to the Freesound API and download
relevant files. This modality provides a means to populate
the grain bucket without the need for the performers to
generate any sounds themselves. The configuration in which
device microphones are utilized is envisioned to function
well with a group of performers who have with them their
own instruments or sound creation devices, which they can
play during the recording period. Otherwise, this query
driven method for populating the grain bucket provides a
more convenient method.

Since there are six main controls of the synthesizer, only
six participants may join a session at any given time. This
ensures that only one users controls each parameter of the
synthesizer. If additional users attempt to join a session
they will see a message indicating that the current session
is full.

3.3 Web server
The web server functions as the main intermediary between
the synthesis engine and the web client. As shown in Fig-
ure 3, POST and GET requests over HTTP are used for
communication between the web server and the client, and
OSC (Open Sound Control) messages are used to communi-
cate with the Pure data patch. An event listener responds
whenever the user changes the slider and this sends a POST
request to the server with the current value. The server then
relays this information to Pure data by sending an appro-
priate OSC message.

When the user submits a search query, this string is sent
to the web server, which then uses the Freesound API in
order to find candidate recordings. A recording is selected
at random from this list, it is then downloaded, converted
to the WAV format at 16 bit 44.1 kHz using FFmpeg5, and
finally an OSC message is sent to the patch to inform it

4https://freesound.org/
5https://www.ffmpeg.org/

Figure 4: Active source file recording on the client.

of the location of the latest addition to the grain bucket.
In a similar fashion, once a recording has been made with
the user’s microphone, it is sent to the server, converted,
and it’s location forwarded onto the patch. In the case
of recordings made from user microphones, a bit of extra
processing is performed. First we measure the total amount
of energy in the recording, and if it is below a set threshold
we reject the recording, indicating it was mostly silence.
If the recording does in fact contain significant signal we
then peak normalize the recording so as to ensure it is loud
enough on playback.

4. FUTURE WORK
Granabular serves as an early prototype of the idea for a
collaborative granular synthesizer. For that reason there
are a number of ways in which to extend or make the sys-
tem more robust. Additionally, this prototype has been
demonstrated in a live, multi-user performance, and from
this early experiment a number of areas of improvement
have been identified.

One of the known limitations comes from the structure
of the communication between the client and the server.
Currently simple HTTP GET and POST requests are used.
While these methods work, they do not allow for continuous
communication between the systems. To improve this we
propose to use web sockets which would allow for continu-
ous communication. This could potentially lower latency in
parameter control and also allow for the server to identify
when a user has disconnected (closed the browser) so as to
open this slot of the session to new users.

Another improvement could be made by apply pre-processing
to the parameter control signals. Currently whenever a
slider is adjusted, the instantaneous value is sent to the syn-
thesizer. This can often cause wanted effects if there is a lag
in communication, resulting in a jerking sound. Simply ap-
plying a filter to reduce the rate at which such parameters
can be adjusted would help to alleviate this issue.

Finally, additional post-processing could be performed on
the recordings downloaded from Freesound. During our
demonstration, we found that many recordings downloaded
included large sections of silence. Simple post processing
could be used to remove regions of silence, ensuring the
source files used in the synthesizer contain audible content
at all times.



5. CONCLUSIONS
A multi-user collaborative granular synthesizer system was
proposed, which features two unique methods for generat-
ing source files in the synthesis process. Our system fos-
ters collaboration between participants to construct evolv-
ing soundscapes using a single granular synthesis engine.
The client facing interface has been designed following min-
imalist principles in order to facilitate participation from
both experienced and novice users alike. We demonstrated
the operation of this system in an interactive performance
where multiple users connected to the system and concur-
rently controlled different parameters of the synthesizer to
successfully generate an evolving acoustic experience.

6. REFERENCES
[1] J. Bischoff, R. Gold, and J. Horton. Music for an

interactive network of microcomputers. Computer
Music Journal, 2(3):24–29, 1978.

[2] D. Gabor. Acoustical quanta and the theory of
hearing. Nature, 159:591–594, 1947.

[3] J. Herrera. Mols: Multiperformer online synthesizer.
03 2009.

[4] S. Jordà and O. Wüst. Fmol: A system for
collaborative music composition over the web. pages
537–542, 01 2001.

[5] L. D. Kuhn and N. Slonimsky. Music since 1900.
Schirmer Reference, 2001.

[6] B. Mayton, G. Dublon, N. Joliat, and J. Paradiso.
Patchwerk: Multi-user network control of a massive
modular synthesizer. 05 2012.

[7] C. Roads. Introduction to granular synthesis.
Computer Music Journal, 12(2):11–13, 1988.

[8] C. Roads, J. Strawn, et al. The computer music
tutorial. MIT press, 1996.

[9] J. Stelkens. peersynth: a p2p multi-user software
synthesizer with new techniques for integrating
latency in real time collaboration. In in International
Computer Music Conference, pages 319–322, 2003.

[10] B. Truax. Real-time granular synthesis with a digital
signal processor. Computer Music Journal,
12(2):14–26, 1988.

[11] I. Xenakis. Formalized music: thought and
mathematics in composition. Number 6. Pendragon
Press, 1992.


